

Welcome to hrv’s documentation!

hrv is a simple Python module that brings the most widely used
techniques to extract information about cardiac autonomic functions through RRi series and Heart Rate Variability (HRV) analyses without losing the Power and Flexibility
of a native Python object.

In other words, the hrv module eases the manipulation, inspection, pre-processing, visualization, and analyses of HRV-related information. Additionally, it is written with idiomatic code and tries to implement the API of a built-in object, which might make it intuitive for Python users.

Contents

	First Steps
	Installation

	Basic Usage

	Read RRi files
	Read .txt files

	Read Polar® (.hrm) files

	Read .csv files

	RRi Sample Data

	RRi statistics
	Basic Statistics

	RRi Basic Information

	RRi Visualization
	Plot RRi Series

	RRi histogram and Heart Rate Histogram

	Time Slicing

	Pre-Processing
	Filters

	Detrending

	Analysis
	Time Domain Analysis

	Frequency Domain Analysis

	Non-linear Analysis

	Non-stationary RRi series
	Time Varying

	Short Time Fourier Transform

	Contribution start guide
	Preparing the eviroment

	Running the tests

	Coding and Docstring styles
	Example

First Steps

Installation

To install use pip:

pip install hrv

Or clone the repo:

git clone https://github.com/rhenanbartels/hrv.git
python setup.py install

Basic Usage

Create an RRi instance

Once you create an RRi object you will have the power of a native Python iterable object.
This means, that you can loop through it using a for loop, get a just a part of the series using native
slicing and much more. Let us try it:

from hrv.rri import RRi

rri_list = [800, 810, 815, 750, 753, 905]
rri = RRi(rri_list)

print(rri)
RRi array([800., 810., 815., 750., 753., 905.])

Slicing

print(rri[0])
800.0

print(type(rri[0]))
numpy.float64

print(rri[::2])
RRi array([800., 815., 753.])

Logical Indexing

from hrv.rri import RRi

rri = RRi([800, 810, 815, 750, 753, 905])
rri_ge = rri[rri >= 800]

rri_ge
RRi array([800., 810., 815., 905.])

Loop

for rri_value in rri:
 print(rri_value)

800.0
810.0
815.0
750.0
753.0
905.0

Note:
When time information is not provided, time array will be created using the cumulative sum of successive RRi. After cumulative sum, the time array is subtracted from the value at t[0] to make it start from 0s

RRi object and time information

from hrv.rri import RRi

rri_list = [800, 810, 815, 750, 753, 905]
rri = RRi(rri_list)

print(rri.time)
array([0. , 0.81 , 1.625, 2.375, 3.128, 4.033]) # Cumsum of rri values minus t[0]

rri = RRi(rri_list, time=[0, 1, 2, 3, 4, 5])
print(rri.time)
[0. 1. 2. 3. 4. 5.]

Note:
Some validations are made in the time list/array provided to the RRi class, for instance:

	RRi and time list/array must have the same length;

	Time list/array can not have negative values;

	Time list/array must be monotonic increasing.

Basic math operations

With RRi objects you can make math operatins just like a numpy array:

rri
RRi array([800., 810., 815., 750., 753., 905.])

rri * 10
RRi array([8000., 8100., 8150., 7500., 7530., 9050.])

rri + 200
RRi array([1000., 1010., 1015., 950., 953., 1105.])

Works with Numpy functions

import numpy as np

rri = RRi([800, 810, 815, 750, 753, 905])

sum_rri = np.sum(rri)
print(sum_rri)
4833.0

mean_rri = np.mean(rri)
print(mean_rri)
805.5

std_rri = np.std(rri)
print(std_rri)
51.44171459039833

Read RRi files

Read .txt files

Text files contains a single column with all RRi values.
Example of RRi text file

800
810
815
750

from hrv.io import read_from_text

rri = read_from_text('path/to/file.txt')

print(rri)
RRi array([800., 810., 815., 750.])

Read Polar® (.hrm) files

The .hrm files contain the RRi acquired with Polar®

A complete guide for .hrm files can be found here [https://www.polar.com/files/Polar_HRM_file%20format.pdf]

from hrv.io import read_from_hrm

rri = read_from_hrm('path/to/file.hrm')

print(rri)
RRi array([800., 810., 815., 750.])

Read .csv files

Example of csv file:

800,
810,
815,
750,

from hrv.io import read_from_csv

rri = read_from_csv('path/to/file.csv')

print(rri)
RRi array([800., 810., 815., 750.])

Note:
When using read_from_csv you can also provide a column containing time information. Let’s check it.

800,1
810,2
815,3
750,4

rri = read_from_csv('path/to/file.csv', time_col_index=1)

print(rri)
RRi array([800., 810., 815., 750.])

print(rri.time)
array([0., 1., 2., 3., 4.])

RRi Sample Data

The hrv module comes with some sample data. It contains:

	RRi collected during rest

	RRi collected during exercise

	RRi containing ectopic beats

Rest RRi

from hrv.sampledata import load_rest_rri

rri = load_rest_rri()
rri.plot()

[image: _images/rest_rri.png]
Exercise RRi

from hrv.sampledata import load_exercise_rri

rri = load_exercise_rri()
rri.plot()

[image: _images/exercise_rri.png]
Noisy RRi

from hrv.sampledata import load_noisy_rri

rri = load_noisy_rri()
rri.plot()

[image: _images/noisy_rri.png]

RRi statistics

Basic Statistics

The RRi object implements some basic statistics information about its values:

	mean

	median

	standard deviation

	variance

	minimum

	maximum

	amplitude

Some examples:

from hrv.rri import RRi

rri = RRi([800, 810, 815, 750, 753, 905])

mean
rri.mean()
805.5

median
rri.median()
805.0

You can also have a complete overview of its statistical charactheristic

desc = rri.describe()
desc

--
 rri hr
--
min 750.00 66.30
max 905.00 80.00
mean 805.50 74.78
var 2646.25 20.85
std 51.44 4.57
median 805.00 74.54
amplitude 155.00 13.70

print(desc['std'])
{'rri': 51.44171459039833, 'hr': 4.5662272355549725}

RRi Basic Information

rri = RRi([800, 810, 815, 750, 753, 905])
rri.info()

N Points: 6
Duration: 4.03s
Interpolated: False
Detrended: False
Memory Usage: 0.05Kb

RRi Visualization

The RRi class brings a very easy way to visualize your series:

Plot RRi Series

from hrv.io import read_from_text

rri = read_from_text('path/to/file.txt')
fig, ax = rri.plot(color='k')

[image: _images/rri_fig.png]

RRi histogram and Heart Rate Histogram

rri.hist()

rri.hist(hr=True)

[image: _images/rri_hist.png]
[image: _images/hr_hist.png]

Time Slicing

It is also possible to slice RRi series with time range information
(in seconds).

In the following example, we are taking a slice that starts at 100s ` and ends at `200s.

from hrv.io import read_from_text

rri = read_from_text('path/to/file.txt')
rri_range = rri.time_range(start=100, end=200)

fig, ax = rri_range.plot(marker='.')

[image: _images/rri_range.png]
Time offset can be reset from the RRi series range:

rri_range.reset_time(inplace=True)

[image: _images/rri_range_reset.png]

Pre-Processing

Filters

Moving Average

from hrv.filters import moving_average
filt_rri = moving_average(rri, order=3)

fig, ax = rri.plot()
filt_rri.plot(ax=ax)

[image: _images/mov_avg.png]
Moving Median

from hrv.filters import moving_median
filt_rri = moving_median(rri, order=3)

fig, ax = rri.plot()
filt_rri.plot(ax=ax)

[image: _images/mov_median.png]
Quotient

Read more [https://www.ncbi.nlm.nih.gov/pubmed/17322593]

from hrv.filters import quotient
filt_rri = quotient(rri)

fig, ax = rri.plot()
filt_rri.plot(ax=ax)

[image: _images/quotient.png]
Threshold Filter

This filter is inspired by the threshold-based artifact correction algorithm offered by kubios [https://www.kubios.com/] ^{®} .
To elect outliers in the tachogram series, each RRi is compared to the median value of local RRi (default N=5).
All the RRi which the difference is greater than the local median value plus a threshold is replaced by
cubic [https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation] interpolated RRi.

The threshold filter has five pre-defined strength values:

	Very Low: 450ms

	Low: 350ms

	Medium: 250ms

	Strong: 150ms

	Very Strong: 50ms

It also accepts custom threshold values (in milliseconds).
The following snippet shows the ectopic RRi removal:

from hrv.filters import threshold_filter
filt_rri = threshold_filter(rri, threshold='medium', local_median_size=5)

fig, ax = rri.plot()
filt_rri.plot(ax=ax)

[image: _images/threshold_filter.png]

Detrending

The hrv module also offers functions to remove the non-stationary trends from the RRi series.
It allows the removal of slow linear or more complex trends using the following approaches:

Polynomial models

Given a degree a polynomial filter is applied to the RRi series and subtracted from the tachogram

from hrv.detrend import polynomial_detrend

rri_detrended = polynomial_detrend(rri, degree=1)

fig, ax = rri.plot()
rri_detrended.plot(ax, color='k')

[image: _images/polynomial_detrend.png]
Smoothness priors

Developed by Tarvainen et al, allow the removal of complex trends. Visit here [https://ieeexplore.ieee.org/document/979357] for more information.
It worth noticing that the detrended RRi with the Smoothness priors approach is also interpolated
and resampled using frequency equals to `fs`.

from hrv.detrend import smoothness_priors

rri_detrended = smoothness_priors(rri, l=500, fs=4.0)

fig, ax = rri.plot()
rri_detrended.plot(ax, color='k')

[image: _images/smoothness_priors.png]
Note:
this approach depends on a numpy matrix inversion and due to floating-point precision it might
present round-off errors in the trend calculation

Savitzky-Golay

Uses the lowpass filter known as Savitzky-Golay filter to smooth the RRi series and remove slow components from the tachogram

from hrv.detrend import sg_detrend

rri_detrended = sg_detrend(rri, window_size=51, polyorder=3)

fig, ax = rri.plot()
rri_detrended.plot(ax, color='k')

[image: _images/savitzky_golay_detrend.png]

Analysis

Time Domain Analysis

from hrv.classical import time_domain
from hrv.io import read_from_text

rri = read_from_text('path/to/file.txt')
results = time_domain(rri)
print(results)

{'mhr': 66.528130159638053,
 'mrri': 912.50302419354841,
 'nn50': 337,
 'pnn50': 33.971774193548384,
 'rmssd': 72.849900286450023,
 'sdnn': 96.990569261440797,
 'sdsd': 46.233829821038042}

Frequency Domain Analysis

from hrv.classical import frequency_domain
from hrv.io import read_from_text

rri = read_from_text('path/to/file.txt')
results = frequency_domain(
 rri=rri,
 fs=4.0,
 method='welch',
 interp_method='cubic',
 detrend='linear'
)
print(results)

{'hf': 1874.6342520920668,
 'hfnu': 27.692517001462079,
 'lf': 4894.8271587038234,
 'lf_hf': 2.6110838171452708,
 'lfnu': 72.307482998537921,
 'total_power': 7396.0879278950533,
 'vlf': 626.62651709916258}

Non-linear Analysis

from hrv.classical import non_linear
from hrv.io import read_from_text

rri = read_from_text('path/to/file.txt')
results = non_linear(rri)
print(results)

{'sd1': 51.538501037146382,
 'sd2': 127.11460955437322}

It is also possible to depict the Poincaré Plot, from which SD1 and SD2 are derived:

rri.poincare_plot()

[image: _images/poincare.png]

Non-stationary RRi series

In some situations like physical exercise, the RRi series might present
a non-stationary behavior. In cases like these, classical approaches are not
recommended once the statistical properties of the signal vary over time.

The following figure depicts the RRi series recorded on a subject riding a bicycle.
Without running analysis and only visually inspecting the time series, is possible
to tell that the average and the standard deviation of the RRi are not constant
as a function of time.

[image: _images/exercise_rri.png]
In order to extract useful information about the dynamics of non-stationary RRi series,
the following methods applies the classical metrics in shorter running adjacent segments,
as illustrated in the following image:

[image: _images/sliding_segments.png]
For example, for a segment size of 30s (S) and 15s (O) overlap a signal with 300s (D) will have P segments:

P = int((D - S) / (S - O)) + 1

P = int((300 - 30) / (30 - 15)) + 1 = 19 segments

Time Varying

Time domain indices applied to shorter segments

from hrv.sampledata import load_exercise_rri
from hrv.nonstationary import time_varying

rri = load_exercise_rri()
results = time_varying(rri, seg_size=30, overlap=0)
results.plot(index="rmssd", marker="o", color="r")

[image: _images/tv_rmssd.png]
Plot the results from time varying together with its respective RRi series

from hrv.sampledata import load_exercise_rri
from hrv.nonstationary import time_varying

rri = load_exercise_rri()
results = time_varying(rri, seg_size=30, overlap=0)
results.plot_together(index="rmssd", marker="o", color="k")

[image: _images/tv_together.png]

Short Time Fourier Transform

To be implemented.

Contribution start guide

The preferred way to start contributing for the project is creating a virtualenv (you can do by using virtualenv,
virtualenvwrapper, pyenv or whatever tool you’d like). Only Python 3.x are supported

Preparing the eviroment

Create the virtualenv:

mkvirtualenv hrv

Install all dependencies:

pip install -r requirements.txt

Install development dependencies:

pip install -r dev-requirements.txt

Running the tests

In order to run the tests, activate the virtualenv and execute pytest:

workon <virtualenv>
pytest -v
or
make test

Coding and Docstring styles

Generally, we try to use Python common styles conventions as described
in PEP 8 [https://www.python.org/dev/peps/pep-0008/] and PEP 257 [https://www.python.org/dev/peps/pep-0257/], which are also followed by the numpy [https://numpydoc.readthedocs.io/en/latest/format.html] project.

Example

def moving_average(rri, order=3):
 """
 Low-pass filter. Replace each RRi value by the average of its ⌊N/2⌋
 neighbors. The first and the last ⌊N/2⌋ RRi values are not filtered

 Parameters

 rri : array_like
 sequence containing the RRi series
 order : int, optional
 Strength of the filter. Number of adjacent RRi values used to calculate
 the average value to replace the current RRi. Defaults to 3.

 .. math::
 considering movinge average of order equal to 3:
 RRi[j] = sum(RRi[j-2] + RRi[j-1] + RRi[j+1] + RRi[j+2]) / 3

 Returns

 results : RRi array
 instance of the RRi class containing the filtered RRi values

 See Also

 moving_median, threshold_filter, quotient

 Examples

 >>> from hrv.filters import moving_average
 >>> from hrv.sampledata import load_noisy_rri
 >>> noisy_rri = load_noisy_rri()
 >>> moving_average(noisy_rri)
 RRi array([904., 918., 941.66666667, ..., 732.66666667, 772.33333, 808.])
 """

We also encourage the use of code linters, such isort [https://github.com/timothycrosley/isort] , black [https://github.com/psf/black] and autoflake [https://github.com/myint/autoflake].

autoflake --in-place --recursive --remove-unused-variables --remove-all-unused-imports .
sort -rc .
black .

Index

 _static/ajax-loader.gif

_images/hr_hist.png
250

200

°
2
3

fKouanbaiy

100

HR (bpm)

_static/comment.png

_images/mov_avg.png
RRi (ms)

1200 4

1000 A

800 A

600 A

400 A

—— Original
—— Moving Average

T
100

T
150
Time (s)

T
200

T
250

300

_static/down-pressed.png

_static/comment-bright.png

_images/exercise_rri.png
RRi (ms)

1600

1400

1200

1000

800

600

500

1000

1500
Time (s)

2000

2500

_static/comment-close.png

_images/poincare.png
RRip+1 (Ms)

Poincaré Plot

1300 A
1200 A
1100 A
1000 A
900 A
R === SD1: 50.94ms
800 A SD2: 83.44ms
800 900 1000 1100 1200

RRip (ms)

_static/favicon.png

_images/polynomial_detrend.png
RRi (ms)

1200

1000

800

600

400

200

—200

— original
—— Detrended
—— Linear Trend

200

400
Time (s)

600

800 1000

_static/file.png

_images/mov_median.png
RRi (ms)

1200 4

1000 A

800 A

600 A

400 A

—— Original
—— Moving Median

T
100

T
150
Time (s)

T
200

T
250

300

_static/down.png

_images/noisy_rri.png
RRi (ms)

1600

1400

1200

1000

800

600

500

1000
Time (s)

1500

2000

2500

_images/quotient.png
RRi (ms)

1600 4

—— Original
——— Quotient
1400 A
1200 A
1000 A
800 A
600 -~
400 T T T T T 1
0 50 100 150 200 250 300

Time (s)

_images/rest_rri.png
RRi (ms)

1200

1100

1000

900

800

200

400
Time (s)

600

800

1000

_static/minus.png

_images/rri_fig.png
RRi (ms)

1400

1300

1200

1100

1000

900

200

400
Time (s)

600

800

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to hrv’s documentation!

 		
 First Steps

 		
 Installation

 		
 Basic Usage

 		
 Read RRi files

 		
 Read .txt files

 		
 Read Polar® (.hrm) files

 		
 Read .csv files

 		
 RRi Sample Data

 		
 RRi statistics

 		
 Basic Statistics

 		
 RRi Basic Information

 		
 RRi Visualization

 		
 Plot RRi Series

 		
 RRi histogram and Heart Rate Histogram

 		
 Time Slicing

 		
 Pre-Processing

 		
 Filters

 		
 Detrending

 		
 Analysis

 		
 Time Domain Analysis

 		
 Frequency Domain Analysis

 		
 Non-linear Analysis

 		
 Non-stationary RRi series

 		
 Time Varying

 		
 Short Time Fourier Transform

 		
 Contribution start guide

 		
 Preparing the eviroment

 		
 Running the tests

 		
 Coding and Docstring styles

 		
 Example

_static/logo-small.png

_images/rri_range_reset.png
RRi (ms)

1400

1300

1200

1100

1000

20

40

Time (s)

60

80

100

_static/up.png

_images/savitzky_golay_detrend.png
RRi (ms)

1200

1000

800

600

400

200

—200

— original
—— Detrended
— Trend

100

200
Time (s)

300

400

_images/rri_hist.png
Frequency

1000 1100 1200 1300 1400
RRi (ms)

_images/rri_range.png
RRi (ms)

1400

1300

1200

1100

1000

100

120

140

Time (s)

160

180

200

_static/up-pressed.png

_images/threshold_filter.png
RRi (ms)

1600

1400

1200

1000

800

600

— original
—— Threshold Filter

7

100
Time (s)

125

150

175

200

_images/tv_rmssd.png
RMSSD (ms)

100

80

60

40

20

500

1000 1500
Time Interval (s)

2000

2500

_images/sliding_segments.png
RRi (ms)

<+—>» Segment Size
<+—> Overlap Size

1600 -

1400 A

1200 A

1000 A

800 A

600 A

0 500 1000 1500 2000 2500
Time (s)

_images/smoothness_priors.png
RRi (ms)

1400

1200

1000

800

600

400

200

—200

— original
—— Detrended
— Trend

0 200

400
Time (s)

600

800

_images/tv_together.png
RRi (ms)

1600

1400

1200

1000

800

600

500

1000

1500
Time (s)

2000

2500

100

80

60

40

20

RMSSD (ms)

